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Abstract

The stress intensity factor (SIF) distribution of a semi-elliptical surface crack is

often used for evaluating the fatigue strength of structures. Virtually exact dis-

tributions of SIFs FISE,FIISE,FIIISE can be provided along the crack front by

solving the hypersingular integral equation of the body force method. In this

paper, to create a very accurate SIF variation formula, the elliptical crack SIF

solutions FIE, FIIE, FIIIE are used and the SIF ratios FISE=FIE, FIISE=FIIE,

FIIISE=FIIIE are mainly focused. Paying attention to the corner point singular-

ity, by applying the least squares method to the ratio FISE=FIE, FIISE=FIIE in

the whole range of parametric angle β, FISE and FIISE formulas can be pro-

posed. Instead, FIIISE formula can be proposed by applying the method of least

squares to the ratio of FIIISE=FIIIE in the range β≥ 15� but applying directly to

FIIISE in the range β≤ 15�. In this way, all of formulas proposed in this paper

provide the SIFs with better than 1.0% accuracy.
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Highlights

• Accurate SIF formulas for semi-elliptical surface cracks were created within

1% error.

• Similar to solving the HIEM, closed form solutions of an elliptical crack

were utilized.

• This formula assume the crack front intersects the free surface at an angle

θSffi100.5�.
• Using singularity r-0.5 along the crack front, the shape FISE(β)≈const. was

investigated.
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1 | INTRODUCTION

Semi-elliptical crack modeling is the most common rep-
resentation of surface defects. In pressure vessels and
general structures, fatigue surface cracks initiate under
alternate loading, propagating in a semi-elliptical shape,
and eventually cause final failure. The stress intensity
factor (SIF) distribution of a semi-elliptical surface crack
has been commonly used for predicting the initiation and
propagation of brittle and fatigue fractures.1–8 In the pre-
vious studies,5,9 the problems of a semi-elliptic surface
crack in Figure 1A,C were formulated as a system of
hypersingular integral equations whose unknown func-
tions are equivalent to crack opening displacements
(CODs); then, by solving the equations, the dimension-
less SIFs FISE,FIISE,FIIISE were provided precisely. By
using those solutions, recently, Goto et al. investigated
the formation mechanism of inclined fatigue cracks in
ultrafine-grained Cu by using the SIF distribution of
semi-elliptical surface cracks.6–8 When using those solu-
tions for experiments and machine design, providing the

SIF in a convenient calculation formula is desirable. In
this sense, after analyzing notched test specimens, our
previous studies provided accurate stress concentration
formulas for the whole notch dimensions, which have
been widely used conveniently.10–12

This paper deals with the dimensionless SIF FISE for-
mula under remote tension in Figure 1A and also the
dimensionless SIFs FIISE and FIIISE formulas under
remote shear in Figure 1C. Exact SIF formulas for
FISE,FIISE,FIIISE will be proposed for semi-elliptic cracks
useful for the whole aspect ratio in the range a=b¼ 1� 4.
In particular, the exact SIF solution of an elliptical crack
in an infinite body FIE, FIIE, FIIIE with a=b¼ 1� 413 in
Figure 1B,D will be considered since those values are
close to FISE, FIISE, FIIISE. Since the variations of the SIF
ratios FISE=FIE, FIISE=FIIE, FIIISE=FIIIE are in a small
range, it is possible to create highly accurate and practi-
cally exact calculation formulas.12

In this study, first, the SIF formula to calculate the
dimensionless SIF FISE in Figure 1A will be obtained as a
function of the crack aspect ratio to b=a and the

FIGURE 1 Semi-elliptical surface crack and elliptical crack. (A) Semi-elliptical surface crack in a semi-infinite. (B) Elliptical crack in an

infinite body. (C) Semi-elliptical surface crack in a semi-infinite body. (D) Elliptical crack in an infinite body. (E) Inclined semi-elliptical

surface crack.
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parametric angle β in Figure 1A indicating the position
from the free surface. Next, by using the formula
obtained, the variation of FISE βð Þ will be examined by
varying the aspect ratio a=b to investigate the crack shape
where FISE βð Þ≈ const. This is because if the SIF is larger
at a certain portion of the surface crack, the portion
extends so as to provide a constant SIF along the crack
front. Therefore, the shape providing a constant SIF is
important since the surface crack becomes larger by
maintaining such shape. Moreover, considering mixed
mode loading under shear, mode II and mode III SIF for-
mulas will be also provided for the inclined semi-
elliptical crack in Figure 1C, where α denotes the
inclined angle from the tensile direction.14 This is
because detailed experimental studies require precise dis-
tributions of mixed-mode SIFs, which are not provided in
a convenient form for machine design. Therefore, simi-
larly to FISE, highly accurate FIISE,FIIISE formulas also
will be created.

In creating such a formula, the difference of the SIF
between the semi-elliptical crack and elliptical crack will
be considered around the corner point β! 0. The stress
singularity of the semi-elliptic crack is different from the
normal crack singularity r�0:5 at the corner point where
the crack front intersects the free surface (see
Appendix A).14–24 Considering such behavior, accurate
calculation formulas will be proposed for the semi-
elliptical surface cracks subjected to mode I, II, III uni-
form loading within 1% error in the range of 1� ≤ β≤ 90�.

2 | STRESS INTENSITY FACTOR
DISTRIBUTION ALONG CRACK
FRONT OBTAINED BY SOLVING
HYPERSINGULAR INTEGRAL
EQUATION

In our previous studies, several surface crack problems
were formulated as a system of hypersingular
integral equations based on the idea of the body force
method.3–5,25,26 The unknown function was then
expressed as the product of the fundamental density and
polynomial. This method may provide the most accurate
solutions to the best of the authors' knowledge (see
Appendix B). For the readers' convenience, this
section provides the outline of this method. The detail
can be seen in references.3–5,25,26 Consider a semi-infinite
body having a semi-elliptical crack as shown in
Figure 1A. The problem is reduced to determining the
density of force doublet f ξ,ηð Þ, which is equivalent to
COD along the prospective boundary of the crack in the
semi-infinite body without a crack. Here, (ξ,η,ς) is a
(x,y,z) coordinate where body force doublet is applied3

H
2π ⨎ ⨎

s

f ξ,ηð Þ
r31

dξdηþ
ð ð

s
K ξ,η,x,yð Þf ξð ,ηÞdξdη

� �
¼�σ∞z ,

ð1Þ
where

K ξ,η,x,yð Þ¼�5�20νþ24ν2

r32
þ12 1� νð Þ 1�2νð Þ

r2 r2þyþηð Þ2

þ6 3yη�2ν 1�2νð Þ yþηð Þ2� �
r52

,

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� ξð Þ2þ y�ηð Þ2

q
, r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� ξð Þ2þ yþηð Þ2

q
,

H¼ 1�2νð Þ=4 1� νð Þ2,

S¼ ξ,ηð Þ= ξ=að Þ2þ η=bð Þ2 ≤ 1,η≥ 0
� �

:

The COD can be defined by using the body force den-
sity f x0,y0ð Þ as shown in Equation (2).27

Uz x0,y0ð Þ¼ uz x0,y0 þ0ð Þ�uz x0,y0 �0ð Þ
¼ 1�2νð Þ 1þνð Þ

E 1�νð Þ f x0,y0ð Þ, x0 ¼ x=a, y0 ¼ y=b

ð2Þ

Equation (1) can be regarded as the boundary condi-
tion at the imaginary boundary of a crack; that is, σz=0.
The first term in left-hand side of Equation (1) expresses

the singular term, and the notation ⨎ ⨎
s

should be inter-

preted as a finite part integral.28 In the second term
K ξ,η,x,yð Þ means the function that satisfies the boundary
condition at the free surface. Here, the unknown func-
tion is approximated by using polynomials and the fun-
damental density function w ξ0,η0ð Þ. It should be noted
that w ξ0,η0ð Þ exactly expresses the stress field due to an
elliptical crack in an infinite body and leads to the semi-
elliptical crack solutions with high accuracy. First, we put

f ξ,ηð Þ¼F ξ0,η0ð Þw ξ0,η0ð Þ, w ξ0,η0ð Þ ¼ bσ∞z
HΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ02�η02

q
,

ξ0 ¼ ξ=a, η0 ¼ η=b,

ð3Þ
where

Φ¼
E kð Þ,k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
a≥ bð Þ

b
a
E k0ð Þ, k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
a< bð Þ

9>=
>;

8><
>: :

Then, the integral Equation (1) becomes
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b
2πΦ ⨎ ⨎

s

F ξ0,η0ð Þ
r31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ02�η02

q
dξdη

2
4

þ
ð ð

s
K ξ, η, x, yð ÞF ξ0,η0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ02�η02

q
dξdη

3
5

¼�1

ð4Þ

Here,F ξ0,η0ð Þ is now approximated in terms of polyno-
mials as follows.

F ξ0, η0ð Þ ¼ α0 þα1η0 þ � � �αn�1η0
n�1 þαnη0

n

þαnþ1ξ
02�1 þαnþ2ξ

02�1η0 þ � � �þα2nξ
02�1η

0n�1

..

. ..
.

þα1�2ξ
02 n�1ð Þ þα1�2ξ

02 n�1ð Þη0

þα1ξ
02n

¼
X1
i¼0

aiGi ξ
0,η0ð Þ

l¼Pn
k¼0 kþ1ð Þ¼ nþ1ð Þ nþ2ð Þ

2
,

G0 ξ0,η0ð Þ ¼ 1,G1 ξ0,η0ð Þ ¼ η0, � � �,Gnþ1 ξ0,η0ð Þ
¼ ξ

02�1, � � �,Gl ξ
0,η0ð Þ¼ ξ

02�n

ð5Þ

Using the approximation method mentioned above, the
following linear equations are obtained for the determina-
tion of the coefficients αi. The unknown coefficientsαi
[i¼ 0,1,2…l, l¼ 1=2ð Þ nþ1ð Þ nþ2ð Þ] are then determined
from (6) by selecting a set of collocation points.

b
2πΦ

X l

i¼0
αi AiþBið Þ¼�1, i¼ 0, 1, 2::…l,

l¼ 1
2

� �
nþ1ð Þ nþ2ð Þ,

Ai ¼ ⨎ ⨎
s

Gi ξ
0,η0ð Þ
r31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ02�η02

q
dξdη;

Bi¼
ð ð

s
K ξ, η, x, yð ÞGi ξ

0,η0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ02�η02

q
dξdη:

ð6Þ

MIβ¼KISEβ

KIEβ
¼Fξ0η0jξ0¼cosβ; η0¼sinβ,

KIEβ¼
σ∞z

ffiffiffiffiffi
πb

p

Φ
sin2βþ b

a

2

cos2β

� �1=4
,FISEβ

¼ KISEβ

σ∞z
ffiffiffiffiffi
πb

p ¼Fξ0η0jξ0¼cosβ;η0¼sinβ

Φ
sin2βþ b

a

2

cos2β

� �1=4
:

ð7Þ

Figure 2 shows the boundary collocation points. At
the intersection points of the mesh whose interval is 0.02,
the boundary conditions are considered to minimize the

stress σz at the collocation points by applying the least
square method. Numerical calculations have been carried
out for changing n in (7).

Tables 1 and 2 show the convergency of dimension-
less SIFs along the crack front with increasing parameter
n in Equation (6). When Poisson's ratio ν= 0, Table 1
shows that the results have the convergency to the 5 sig-
nificant digits for most cases. When ν= 0, a=b¼ 1, the
maximum value of the SIF FMax

ISE = 0.7687 appears at
β¼ 0.

When ν= 0.3, Table 2 shows that the results have the
convergency in the 4 significant digits for most cases
when n= 19 and in the 3 significant digits for worst cases
in the range β¼ 0� 10�. When ν= 0.3, a=b¼ 1 the maxi-
mum value of the SIF FMax

ISE = 0.748 appears at β¼ 3�.
Note that when ν= 0.3, as β! 0, the dimensionless SIF
FISE! 0 as explained in Section 3.1.

3 | FORMULA FOR THE STRESS
INTENSITY FACTOR FOR SEMI-
ELLIPTICAL SURFACE CRACKS
UNDER MODE I LOADING

3.1 | Stress singularity at corner point
and stress intensity factor around
corner point

The semi-elliptical crack perpendicular to the surface in
Figure 1 is commonly used to represent a surface defect.

FIGURE 2 Boundary collocation points.
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Figure 3A illustrates the so-called corner point singular
stress, the distance from which is denoted by r. The cor-
ner point is defined as the point where the crack front
intersects the free surface. In semi-elliptical modeling,
the intersection angle θS¼ 90� defining the singularity
exponent. The previous studies showed that at the corner
point, the stress singularity is different from r�0:5 for ordi-
nary cracks if Poisson's ratio ν≠ 0:23,29–35 Therefore, as
shown in Figure 3, the corner point singular stress for
symmetric mode deformation is expressed as σ/ r�pS ,
τ/ r�pS . Instead, the corner point singular stress for
skew-symmetric deformation is expressed as σ/ r�pA ,
τ/ r�pA .

In Appendix A, previous studies for corner point sin-
gularity exponent pS, pA are summarized. Although small
difference can be seen among those results, it is known
that only ν¼ 0 of Poisson's ratio provides a consistent
stress singularity r�0:5 along the crack front. This is the
reason why the convergency of the SIF solution for ν¼ 0
is much better than the one for ν¼ 0:3 (see Table 2). In
other words, solving the problem of ν¼ 0 is much easier
than solving the problem of ν≠ 0. When ν¼ 0:3, the cor-
ner point singularity is smaller as pS ¼ 0:452< 0:5, and
therefore, as β! 0, the dimensionless SIF
FISE βð Þ! 0:25,34

Figure 3B illustrates the corner point singularity
index pA under skew-symmetric deformation as well as
the corner point singularity index pS under symmetric
deformation. When ν¼ 0:3, the corner point singularity
is smaller as pA ≈ 0:6> 0:5. Therefore, under remote
shear in Figure 1C, as β! 0, FIISE βð Þ !∞ and
FIIISE βð Þ!∞. The effect of corner point may be localized

similarly to FISE, but since the values of FIISE, FIIISE go to
infinity, it may be difficult to make the formula exactly
reflect the corner point singularity around β¼ 0. There-
fore, in this paper, the range of 1� ≤ β ≤ 90� and
1 ≤ a=b≤ 4 will be considered to make accurate formu-
las for FISE, FIISE, FIIISE.

Although the corner point singularity exponent pS,pA
was described above, the region affected by the corner
point singularity has to be specified. Regarding the semi-
circular surface crack a=b= 1 under tension in
Figure 1A, when ν¼ 0:3 the maximum SIF, FMax

ISE = 0.748
appears at β¼ 3� (see Table 2). As shown in Table A3 in
Appendix A, Murakami-Ishida analyzed the maximum
SIF and the position of the square surface crack with side
length 2a.36 The results showed that when ν¼ 0:3, the
maximum SIF FMax

I appears at y ¼ 4:69�10�2�a, which
almost coincides with the position of the maximum SIF
of the semicircular crack, that is, y¼ sin 3� ¼ 5:24�
10�2�a: Also, Murakami explained that the region con-
trolled by the corner point singularity is limited in the
small range y¼�10�3�a, and, therefore, the discussion
on the corner point singularity is practically meaningless.

Since the semicircular and semi-elliptical cracks have
zero SIF values at the corner point β¼ 0, under stable
fatigue crack extension,36 other crack tips may extend
further compared to the corner point β¼ 0. Therefore,
the intersection angle θS with the free surface becomes
larger than the original θS=90�. Figure 4 shows the sin-
gular exponent pS for symmetric deformation at the cor-
ner point when the crack front intersects to the free
surface at the angle θS:

36 As indicated in reference,36 the
corner point singularity only affects a limited area.

FIGURE 3 Definition of corner point singularity exponents when the crack front intersects to free surface with angle θS ¼ 90�.
(A) Singular stress at the corner point expressed as σ/ r�pS , τ/ r�pS for symmetric deformation and σ/ r�pA , τ/ r�pA for skew-symmetric

deformation. (B) Relation of pS , pA versus ν.
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Therefore, the semi-elliptical modeling should be slightly
modified so that the crack front intersects to the free sur-
face at an angle θS ffi 100:5�, as shown in Figure 4. This
crack model has a stress singularity r�0:5 across the crack
front including the corner point. In other words, at the
corner point, the certain value of SIF should be consid-
ered instead of FISE 0ð Þ¼ 0. In this sense, this paper for-
cuses on FISE βð Þ in the range of β¼ 1� � 90� without
considering FISE 0ð Þ¼ 0. This paper deals with semi-
elliptical cracks in a semi-infinite body under uniform
loading as shown in Figure 1. However, since the corner
point singularity is meaningless in practice, such semi-
elliptical surface crack modeling should be considered
such that the crack front intersects the free surface at an

angle θS ffi 100:5�. This crack model has a stress singular-
ity r�0:5 across the crack front including the corner point.

3.2 | Formula for FISE

Confirming the convergency shown in Tables 1 and 2,
when ν¼ 0:3 and a=b= 1.0, 1.33, 2.0, 4.0, the SIFs were
obtained3,26 and indicated in Table 3 as FISE in the range
of 1� ≤ β≤ 90�. Table 3 also shows the SIF values of an
elliptical crack FIE in Equation (7).13 Since the variations
of FISE βð Þ and FIE βð Þ are close, the ratio of FISE/FIE is in
a narrow range as 1.0344� 1.2875. Therefore, the least-
squares method can be applied to FISE/FIE instead of

FIGURE 4 Corner point singular exponents pS for symmetric deformation vs crack front angle intersection to free surface θS and

modified semi-elliptical crack modelling providing r�0:5 singularity across the crack front. (A) pS versus θS when ν¼ 0:3 indicating that pS ¼
0:5 can be provided when θS ≈ 100:5�. (B) Corner point intersection angle θS providing pS ¼ 0:5:

1768 TAKASE and NODA

 14602695, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14239 by K

yushu Institute O
f T

echnology, W
iley O

nline L
ibrary on [14/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T
A
B
L
E

3
St
re
ss

in
te
n
si
ty

fa
ct
or

F
IS
E
,F

IE
an

d
ra
ti
o
of

F
IS
E
=
F
IE

(a
=
b
=
1.
0,
1.
33
,2

.0
,4
.0
,ν

=
0.
3)
.

β
(�
)

a
=
b

1.
0

1.
33

F
I

F
IS
E
in

R
ef
.3

F
IE

fr
om

E
q
u
at
io
n
(7
)

F
IS
E

F
IE

E
q
u
at
io
n
s

(8
a)

an
d
(8
b)

E
rr
or

(%
)

F
IS
E
in

R
ef
.3

F
IE

fr
om

E
q
u
at
io
n
(7
)

F
IS
E

F
IE

E
q
u
at
io
n
s

(8
a)

an
d
(8
b)

E
rr
or

(%
)

1
0.
74
2

0.
63
66

1.
16
56

0.
74
18

�0
.0
3

0.
74
0

0.
62
69

1.
18
04

0.
73
99

�0
.0
2

2
0.
74
6

0.
63
66

1.
17
19

0.
74
67

0.
09

0.
74
2

0.
62
70

1.
18
34

0.
74
24

0.
06

3
0.
74
8

0.
63
66

1.
17
50

0.
74
76

�0
.0
6

0.
74
3

0.
62
72

1.
18
46

0.
74
26

�0
.0
5

4
0.
74
6

0.
63
66

1.
17
19

0.
74
57

�0
.0
3

0.
74
1

0.
62
75

1.
18
09

0.
74
12

0.
02

5
0.
74
2

0.
63
66

1.
16
56

0.
74
23

0.
04

0.
73
9

0.
62
78

1.
17
71

0.
73
86

�0
.0
6

6
0.
73
8

0.
63
66

1.
15
93

0.
73
80

�0
.0
1

0.
73
5

0.
62
82

1.
17
00

0.
73
53

0.
05

7
0.
73
3

0.
63
66

1.
15
14

0.
73
34

0.
05

0.
73
2

0.
62
87

1.
16
43

0.
73
18

�0
.0
3

8
0.
72
9

0.
63
66

1.
14
51

0.
72
89

�0
.0
1

0.
72
8

0.
62
92

1.
15
70

0.
72
82

0.
03

9
0.
72
5

0.
63
66

1.
13
89

0.
72
48

�0
.0
3

0.
72
5

0.
62
98

1.
15
11

0.
72
49

�0
.0
1

10
0.
72
1

0.
63
66

1.
13
26

0.
72
12

0.
02

0.
72
2

0.
63
05

1.
14
51

0.
72
19

�0
.0
1

20
0.
69
69

0.
63
66

1.
09
47

0.
69
71

0.
03

0.
70
91

0.
64
07

1.
10
68

0.
70
94

0.
04

30
0.
68
21

0.
63
66

1.
07
15

0.
68
22

0.
01

0.
71
09

0.
65
54

1.
08
47

0.
71
08

�0
.0
1

40
0.
67
29

0.
63
66

1.
05
70

0.
67
28

�0
.0
1

0.
71
97

0.
67
21

1.
07
08

0.
71
97

0.
00

50
0.
66
67

0.
63
66

1.
04
73

0.
66
67

0.
01

0.
73
12

0.
68
87

1.
06
18

0.
73
13

0.
01

60
0.
66
27

0.
63
66

1.
04
10

0.
66
27

0.
00

0.
74
24

0.
70
32

1.
05
57

0.
74
24

0.
00

70
0.
66
01

0.
63
66

1.
03
69

0.
66
01

�0
.0
1

0.
75
15

0.
71
44

1.
05
19

0.
75
15

0.
00

80
0.
65
87

0.
63
66

1.
03
47

0.
65
87

0.
00

0.
75
74

0.
72
15

1.
04
98

0.
75
75

0.
01

90
0.
65
85

0.
63
66

1.
03
44

0.
65
85

0.
00

0.
75
98

0.
72
39

1.
04
97

0.
75
98

0.
01

TAKASE and NODA 1769

 14602695, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14239 by K

yushu Institute O
f T

echnology, W
iley O

nline L
ibrary on [14/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T
A
B
L
E

3
(C
on

ti
n
u
ed
)

β
(�
)

a
=
b

2.
0

4.
0

F
I

F
IS
E
in

R
ef
.3

F
IE

fr
om

E
q
u
at
io
n
(7
)

F
IS
E

F
IE

E
q
u
at
io
n
s

(8
a)

an
d
(8
b)

E
rr
or

(%
)

F
IS
E
in

R
ef
.3

F
IE

fr
om

E
q
u
at
io
n
(7
)

F
IS
E

F
IE

E
q
u
at
io
n
s

(8
a)

an
d
(8
b)

E
rr
or

(%
)

1
0.
71
0

0.
58
40

1.
21
58

0.
70
96

�0
.0
6

0.
60
1

0.
46
68

1.
28
75

0.
60
09

�0
.0
2

2
0.
70
4

0.
58
44

1.
20
47

0.
70
49

0.
13

0.
58
3

0.
46
84

1.
24
47

0.
58
31

0.
02

3
0.
70
2

0.
58
51

1.
19
99

0.
70
18

�0
.0
3

0.
57
3

0.
47
10

1.
21
66

0.
57
35

0.
08

4
0.
70
0

0.
58
60

1.
19
46

0.
69
96

�0
.0
6

0.
57
0

0.
47
46

1.
20
11

0.
56
96

�0
.0
8

5
0.
69
8

0.
58
72

1.
18
88

0.
69
77

�0
.0
4

0.
57
0

0.
47
90

1.
18
99

0.
56
96

�0
.0
8

6
0.
69
6

0.
58
86

1.
18
25

0.
69
60

0.
00

0.
57
2

0.
48
43

1.
18
11

0.
57
21

0.
02

7
0.
69
4

0.
59
03

1.
17
57

0.
69
42

0.
03

0.
57
6

0.
49
03

1.
17
47

0.
57
63

0.
04

8
0.
69
2

0.
59
22

1.
16
86

0.
69
25

0.
07

0.
58
1

0.
49
70

1.
16
91

0.
58
13

0.
05

9
0.
69
1

0.
59
43

1.
16
27

0.
69
09

�0
.0
2

0.
58
7

0.
50
42

1.
16
42

0.
58
69

�0
.0
2

10
0.
69
0

0.
59
67

1.
15
65

0.
68
96

�0
.0
6

0.
59
3

0.
51
19

1.
15
85

0.
59
28

�0
.0
3

20
0.
70
44

0.
62
95

1.
11
90

0.
70
45

0.
02

0.
67
67

0.
60
07

1.
12
65

0.
67
69

0.
03

30
0.
73
82

0.
67
16

1.
09
92

0.
73
80

�0
.0
2

0.
76
61

0.
68
84

1.
11
29

0.
76
60

�0
.0
2

40
0.
77
67

0.
71
43

1.
08
74

0.
77
67

0.
00

0.
84
46

0.
76
37

1.
10
59

0.
84
47

0.
02

50
0.
81
28

0.
75
26

1.
08
00

0.
81
29

0.
02

0.
90
92

0.
82
51

1.
10
20

0.
90
93

0.
01

60
0.
84
29

0.
78
40

1.
07
52

0.
84
29

0.
00

0.
95
92

0.
87
23

1.
09
96

0.
95
91

�0
.0
1

70
0.
86
53

0.
80
70

1.
07
23

0.
86
51

�0
.0
2

0.
99
50

0.
90
59

1.
09
84

0.
99
47

�0
.0
3

80
0.
87
88

0.
82
10

1.
07
04

0.
87
89

0.
01

1.
01
62

0.
92
59

1.
09
75

1.
01
64

0.
02

90
0.
88
35

0.
82
57

1.
07
00

0.
88
33

�0
.0
3

1.
02
34

0.
93
26

1.
09
74

1.
02
31

�0
.0
3

1770 TAKASE and NODA

 14602695, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14239 by K

yushu Institute O
f T

echnology, W
iley O

nline L
ibrary on [14/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



directly applied to FISE, to obtain a highly accurate for-
mula (12). The use of FIE in creating FISE formula is
exactly the same as the use of w ξ0,η0ð Þ in Equation (3) in
solving the hypersingular integral Equation (1) for semi-
elliptical cracks.

As described in Section 3.1, since the singularity expo-
nent at the corner point pS = 0.452< 0.5 is weaker com-
pared to the other crack front, FISE ! 0 as β! 0. Corner
point effect appears in the range β = 3� � β = 1� as a
decrease of FISE. The effect of the corner point is localized
and limited in the range of β≤ 3�. Therefore, in the range

of 1� ≤ β≤ 90� and 1≤ a=b≤ 4 targeted in this paper, the
effect of the corner point is more limited, and the ratio
FISE/FIE is in the range FISE/FIE= 1.0344� 1.2875. Fur-
thermore, the applicable range of the formula is into two
parts, that is, 1� ≤ β≤ 20� and 10� ≤ β≤ 90�; then, the
ratio's range FISE/FIE can be smaller. In this way, the fol-
lowing formulas (8a) and (8b) can be created by applying
the least squares method to the ratio of FISE/FIE in
Table 3. The accuracy of the formulas can be estimated
as within 0.2% compared to the FISE values in Table 3 in
the range 1� ≤ β≤ 90� and 1 ≤ a=b≤ 4.

When1� ≤ β≤ 20�πð=180≤ β≤ π=9Þ, 1:0≤ a=b≤ 4:0 :

FISE=FIE ¼ 1:5713�1:1221 b=að Þþ1:0408 b=að Þ2�0:34133 b=að Þ3

þ �0:18718þ0:56557 b=að Þ�0:53103 b=að Þ2þ0:17466 b=að Þ3	 

β

þ 0:032013�0:085978 b=að Þþ0:063788 b=að Þ2�0:015795 b=að Þ3	 

β2

þ �0:0026331þ0:0054534 b=að Þ�0:0017899 b=að Þ2�0:00046795 b=að Þ3	 

β3

þ½�0:00010321�0:00013791 b=að Þ�8:9406�10�5 b=að Þ2þ0:00010013 b=að Þ3
�
β4

þ½�1:5484�10�6þ8:3237�10�7 b=að Þþ3:9337�10�6 b=að Þ2�2:833�10�6 b=að Þ3

�

β5

1:0947≤FISE=FIE ≤ 1:2875, 0:570≤FISE ≤ 0:748ð Þ

ð8aÞ

When10� ≤ β≤ 90� π=18≤ β≤ π=2ð Þ, 1:0≤ a=b≤ 4:0 :
FISE=FIE ¼ 1:1879þ0:21553 b=að Þ�0:3688 b=að Þ2þ0:15787 b=að Þ3

þ �0:00712�0:010195 b=að Þþ0:018019 b=að Þ2�0:0081504 b=að Þ3	 

β

þ 0:00029402�1:8046�10�5 b=að Þ�0:00025984 b=að Þ2þ0:00014923 b=að Þ3	 

β2

þ �5:6483�10�6þ4:0129�10�6 b=að Þþ5:2159�10�7 b=að Þ2�9:9946�10�7 b=að Þ3	 

β3

þ 5:1738�10�8�5:46�10�8 b=að Þþ1:7392�10�8 b=að Þ2�6:4006�10�11 b=að Þ3	 

β4

þ �1:8135�10�10þ2:2527�10�10 b=að Þ�9:5656�10�11 b=að Þ2þ1:77�10�11 b=að Þ3	 

β5

1:0344≤FISE=FIE ≤ 1:1585,0:593≤FISE ≤ 1:0234ð Þ

ð8bÞ
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3.3 | Distribution of FISE provided by
formula

Figure 5 illustrates the variations of the ratio FISE=FIE

provided by the created formulas (8a) and (8b). The dif-
ference between the elliptical crack and the semi-
elliptical crack becomes larger around the corner point
due to the different singularity exponent. Figure 6 illus-
trates the variations of FISE βð Þ obtained by multiplying
the formulas (8a) and (8b) by the exact solutionFIE βð Þ in
Equation (7).

As shown in Figure 6, when a=b= 1.27� 4.0, the
maximum value of FISE βð Þ appears at β= 90�. Instead,

when a=b= 1.0� 1.27, the maximum value of FISE βð Þ
appears at β= 3�. When Poisson's ratio ν = 0, as shown
in Table 1, the maximum value of FISE βð Þ appears at
β= 0. When ν= 0.3, due to the different singularity expo-
nent at the corner point, FISE βð Þ! 0 as β! 0. This is the
reason why the maximum values appear at β= 3� when
a=b=1.0� 1.27.25,34

Consider stable crack growth in metal fatigue. Alter-
nate loading allows the semi-elliptical surface crack with
a=b≈ 1 to expand in size by increasing a=b, since the
point around β≈ 3� has the maximum SIF. Instead,
the semi-elliptical crack with a=b≈ 1.5 has the maxi-
mum SIF at the point around β¼ 90�, so the size can be
enlarged by decreasing a=b. Thus, a semi-elliptical sur-
face crack tends to change shape along the crack front
such that FISE βð Þ≈ const. Therefore, the aspect ratio a=b
that satisfies FISE βð Þ≈ const should be investigated using
Equation (1).

By varying a=b, Figure 7 illustrates the maximum
value FMax

ISE , the minimum valueFMin
ISE , the difference

ΔF =FMax
ISE �FMin

ISE , the average value FAve:
ISE , and the stan-

dard deviation FSD
ISE . Since the maximum value appears at

β≈ 3� or β¼ 90� depending on a=b, both of the local max-
imum values FMax

ISE

��
βffi3� and FMax

ISE

��
β¼90� are indicated in

Figure 7. As shown in Equation (9), those values are
obtained from the data of the created formulas (8a) and
(8b) in increments of 1�, that is, the values of FSD

ISE βð Þ
when β¼ 1�,2�,3�…, 90�.

FAve:
ISE 	 1

N

XN
i¼1

FISE i deg:ð Þð Þ,

FSD
ISE 	

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

FISE i deg:ð Þð Þ�FAve:
ISE

� 2
vuut , N ¼ 90:

ð9Þ

Figure 7B shows the details of FMax
ISE

��
βffi3� , F

Max
ISE

��
β¼90� ,

FMin
ISE

��
β¼4��90� , F

Ave:
ISE when a=b= 1.0� 1.5. Figure 7C shows

the details of the difference ΔF ¼ FMax
ISE βffi90� �FMin

ISE

��
jβ¼4��90� , ΔF ¼FMax

ISE βffi90� �FMin
ISE

�� ��
β¼4��90� , FSD

ISE when

a=b= 1.0� 1.5. From Figure 7C, the minimum value of
the standard deviation occurs at a=b= 1.20� 1.21. The
difference between the maximum and minimum values

ΔF ¼ FMax
ISE βffi 3 or

β¼ 90�
�FMin

ISE

����
����
β¼4��90�

takes the minimum value

at a=b= 1.27.
Figure 8 illustrates the maximum values of SIF

FMax
ISE βffi 3� or

β¼ 90�
¼KMax

ISE

���� = σ0
ffiffiffiffiffi
πb

p� 
by varying a=b. As shown in

Figure 8, when a=b ≤ 1.27, the maximum value FMax
ISE

FIGURE 6 FISE provided by Equation (8).

FIGURE 5 FISE=FIE provided by Equations (8a) and (8b).
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appears at β = 3�, and when a=b >1.27, it appears at

β = 90�. Then, FMax
ISE βffi 3� or

β¼ 90�

���� takes the smallest value at

a=b = 1.27. Similarly, as shown in Figure 7, ΔF¼

FMax
ISE βffi 3� or

β¼ 90�
�FMin

ISE

����
����
β¼4��90�

takes the smallest value at

a=b=1.27. Since the difference between the maximum
and minimum values is smallest, fatigue surface cracks

FIGURE 7 Local maximum values FMax
ISE

��
βffi3� , F

Max
ISE

��
β¼90� , minimum value FMin

ISE

��
β¼4��90� , difference ΔF¼

FMax
ISE β¼90� �FMin

ISE

�� ��
β¼4��90� , difference ΔF¼FMax

ISE βffi3� �FMin
ISE

�� ��
β¼4��90� , average value F

Ave:
ISE , and standard deviation FSD

ISE of the SIF of a semi-

elliptical crack when ν = 0.3. (A)FMax
ISE

��
β ≈ 3� , F

Max
ISE β¼90� , FMin

ISE ,
�� ��

β¼4��90� , ΔF¼FMax
ISE β¼90� �FMin

ISE

�� ��
β¼4��90� , ΔF¼FMax

ISE β¼90� �FMin
ISE

�� ��
β¼4��90� , F

Ave:
ISE ,

FSD
ISE in the range a=b =1.0� 4.0. (B) FMax

ISE

��
βffi3� , F

Max
ISE

��
βffi90� , F

Min
ISE

��
β¼4��90� , in the range a=b= 1.0� 1.5. (C) ΔF¼ FMax

ISE βffi 3or
β¼ 90�

�FMin
ISE

����
����
β¼4��90�

takes the minimum value at a=b= 1.27 and FSD
ISE takes the minimum value at a=b= 1.205
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maintain the shape ratio a=b≈ 1.27 and enlarge the over-
all dimensions.

Figure 8 also shows the result in Equation (10a) in
comparison with the maximum SIF expressed
in Equation (10b).37

KMax
ISE βffi 3� or

β¼ 90�
�F
Max

ISE

����
����βffi 3�or

β¼ 90�

σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffi
area

pq

¼ 0:62� 0:67ð Þσ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffi
area

pq
Þ¼ 0:65�0:03ð Þσ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffi
area

pq
Þ, area¼ πab=2

ð10aÞ

It is known that the maximum SIFs of an
arbitrarily shaped surface crack can be expressed approxi-
mately in terms of

ffiffiffiffiffiffiffiffiffi
area

p
parameter as shown in

Equation (10a).

KMax
ISE βffi 3� or

β¼ 90�

���� ≈ 0:65σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffi
area

pq
, area¼ area of crack

ð10bÞ

Therefore, by using Equation (10a), the maximum
SIF KMax

ISE

��
βffi3�or β¼90� can be estimated within 5% error.

Figure 9 shows the detailed SIF distribution FISE βð Þ
when a=b = 1.18� 1.30. Since the crack shape
is restricted to semi-ellipse, the SIF distribution cannot
be exactly constant. However, when a=b = 1.20� 1.30,
the SIF distribution is almost constant as
FISE βð Þ≈ const. For example, when a=b = 1.27,
ΔF = FMax

ISE �FMin
ISE can be minimized as ΔF ≈ 0.04 and

when a/b = 1.205, the standard variationFSD
ISE can be

minimized as FSD
ISE ≈ 0.01.

4 | FORMULA FOR THE STRESS
INTENSITY FACTOR FOR SEMI-
ELLIPTICAL SURFACE CRACKS
UNDER MODE II LOADING

4.1 | Hypersingular integral equation
under mode II loading

Consider a semi-infinite body subjected to shear stress at
infinity τ∞zx0 ¼ 1 as shown in Figure 1C where a semi-
elliptical crack is on the xy-plane and a free surface is on
the zx-plane. On the idea of the body force method, the
problem is formulated as a system of singular integral
equations whose unknowns are body force densities
f yz ξ,ηð Þ, f zx ξ,ηð Þ distributed in a semi-infinite body with-
out cracks.5,9 Here, ξ,η,ζð Þ is a x,y,zð Þ coordinate where
the body force is applied. Equations (11a) and (11b)
enforce boundary conditions at the prospective boundary
S for crack; that is, τyz = 0, τzx = 0. Equation (1) includes
singular terms in the form of 1=r3, 1=r5 1 corresponding
to the ones of an elliptical crack in an infinite body. The

notation ⨎ ⨎
s
should be interpreted as a finite part inte-

gral in the region S. The notation K
f zx
yz ξ, x, y, ψð Þ refers

to a function that satisfies the boundary condition for free
surface.5,9

1
8π 1�νð Þ ⨎ ⨎

s

2 1�2νð Þ
r31

þ6ν y�ηð Þ2
r51

( )
f yz ξ,ηð Þdξdη

2
4

þ ⨎ ⨎
s

6ν x� ξð Þ y�ηð Þ
r51

f zx ξ,ηð Þdξdη

þ
ð ð

s
K

f yz
yz ξ, η, x, y,ψð Þf yz ξ,ηð Þdξdη

þ
ð ð

s
K

f zx
yz ξ, x, y, ψð Þf zx ξ,ηð Þdξdη

3
5¼ 0

ð11aÞ

FIGURE 8 Maximum value of the SIF defined as

FMax
ISE βffi 3� or

β¼ 90�
�KMax

ISE

����
����βffi 3�or
β¼ 90�

= σ0
ffiffiffiffiffi
πb

p� 
and

F
Max
ISE βffi 3� or

β¼ 90�
�KMax

ISE

����
����βffi 3�or
β¼ 90�

= σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffi
area

pp� �
when ν= 0.3.
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1
8π 1�νð Þ ⨎ ⨎

s

6ν x� ξð Þ y�ηð Þ
r51

� �
f yz ξ,ηð Þdξdη

2
4

þ ⨎ ⨎
s

2 1�2νð Þ
r31

þ6ν x� ξð Þ2
r51

( )
f zx ξ,ηð Þdξdη

þ
ð ð

s
K

f yz
zx ξ, η, x, y, ψð Þf yz ξ,ηð Þdξdη

þ
ð ð

s
K

f zx
zx ξ, x, y, ψð Þf zx ξ,ηð Þdξdη

3
5¼�1

ð11bÞ

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�ξð Þ2þ y�ηð Þ2þ z� ζð Þ2

q
S¼ ξ,ηð Þ= ξ=að Þ2þ η=bð Þ2 ≤ 1, η≥ 0

� � ð11cÞ

Ux xa,ybð Þ¼ux xa,ybþ0ð Þ�ux xa,yb�0ð Þ

¼ 2 1�νð Þ
E

f zx xa,ybð Þ,

Uy xa,ybð Þ¼uy xa,ybþ0ð Þ�uy xa,yb�0ð Þ

¼ 2 1�νð Þ
E

f yz xa,ybð Þ,
Uz xa,ybð Þ¼uz xa,ybþ0ð Þ�uz xa,yb�0ð Þ

¼ 1þ2νð Þ 1þνð Þ
E 1�νð Þ f zz xa,ybð Þ¼ 0

ð11dÞ

In the numerical solution, the following expressions
have been used to approximate the unknown functions
f yz ξ,ηð Þ), f zx ξ,ηð Þ as continuous functions.

f yz ξ,ηð Þ¼Fyz ξa,ηbð Þwyz ξa,ηbð Þ, f zx ξ,ηð Þ¼Fzx ξa,ηbð Þwzx ξa,ηbð Þ

wyz ξa,ηbð Þ¼ 2b 1�νð Þk2τ∞yz0
C kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ2a�η2b

q
,τ∞yz0 ¼ 1,

wzx ξa,ηbð Þ¼ 2b 1�νð Þk2τ∞zx0
B kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ2a�η2b

q
,τ∞zx0 ¼ 1

B kð Þ¼ k2�ν
� 

E kð Þþνk02K kð Þ,
C kð Þ¼ k2þνk02

� �
E kð Þ�νk02K kð Þ

k0 ¼ b
a
≤ 1, k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

a

� �2
s

, ξa ¼
ξ

aηb
¼ η=b

K kð Þ¼
Z π=2

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sin2λ

p : E kð Þ¼
Z π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sin 2λ

p
dλ

ð12Þ
In Equation (12), wyz ξa,ηbð Þ, wzx ξa,ηbð Þ are called fun-

damental density functions, which express the exact
stress field due to an elliptical crack in an infinite body
under the stresses τ∞yz0, τ∞zx0 and lead to semi-elliptical
crack solutions with high accuracy. In numerical calcula-
tions, we can put τ∞yz0 ¼ τ∞zx0 = 1. Using the expression
(12), Equation (11a) is reduced to algebraic equations for
the determination of unknown functions Fyz ξa,ηbð Þ,
Fzx ξa,ηbð Þ. The SIFs FIISE and FIIISE can be calculated
from Fyz ξa,ηbð Þ, Fzx ξa,ηbð Þ confirming the convergency to
the fourth digit. The obtained mode II and mode III SIFs
are indicated in Tables 4 and 5.

4.2 | Formula for FIISE

Table 4 summarizes the results for mode II SIF as “FIISE

in Ref.9”, which is obtained from Equations (13) and

FIGURE 9 Detail of SIF

distribution where FISE βð Þ is almost

constant as FISE βð Þ≈ constant at

aspect ratio a=b= 1.18� 1.30 of

semi-elliptical surface cracks.

[Colour figure can be viewed at

wileyonlinelibrary.com]
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(14) for a=b= 1.0, 1.33, 1.5, 2.0, and 4.0 and 1� ≤ β ≤ 90�

when ν¼ 0:3. The exact solution FIISE of an elliptical
crack in an infinite body in Equation (12) is also
indicated for comparison.13 From Table 4, it is seen that
the ratio FIISE=FIIE is distributed in a narrow range of
FIISE=FIIE= 0.811� 1.050. Since FIISE and FIIE are almost
equal widely, the least-squares method can be applied to
FIISE=FIIE instead of directly applying to obtain a highly
accurate formula12. The use of FIIE in formulating the
formula of FIISE is exactly the same as the use of the solu-
tion of an elliptical crack wyz ξa,ηbð Þ, wzx ξa,ηbð Þ in
Equation (12) in solving the system of hypersingular inte-
gral Equations (11) for semi-elliptical crack.

As shown in Table A2 and Figure 3, unlike the
SIF under tension, the corner point singularity expo-
nent pA is larger than that of the normal crack as
pA = 0.607 > 0.5. Therefore, FIISE value is supposed to
go to infinity as FIISE !∞ as β! 0. In Table 4, however,
in the range of 1� ≤ β ≤ 90� and 1 ≤ a=b≤ 4, which is
the target range in this paper, FIISE=FIIE = 0.811� 1.050,

and the effect of corner point is not so large. In
other words, even under the shear loading, the
influence of the corner point is localized and limited to
just around β¼ 0.

To create an accurate formula by reducing the
variation range, the whole range for FIISE=FIIE is
divided into two ranges: one is in the range 1� ≤ β≤ 15�

and the other is in the range 5� ≤ β≤ 90�.
Specifically, FIISE=FIIE = 0.908� 1.05 in the range of
1� ≤ β≤ 15�, and FIISE=FIIE ¼ 0:811� 0:96 in the
range of 15� ≤ β≤ 90�. Then, accurate formulas of
FIISE=FIIE can be obtained over the entire range of
1� ≤ β≤ 90�.

The following formulas (14a) and (14b) are created by
applying the least squares method to the ratio of
FIISE=FIIE. The values of the formulas are also indicated
in Table 4 as Equations (14a) and (14b). As shown in
Table 4, the value of FIISE obtained by these formulas has
an accuracy within 0.70% of the value of FIISE in Ref.9 in
the range of a=b= 1.0� 4.0.

1� ≤ β≤ 5� π=180≤ β≤ π=36ð Þ,1:0≤ a=b≤ 4:0 :

FIISE=FIIE ¼ 0:75402þ3:0009 b=að Þ�7:6743 b=að Þ2þ7:7609 b=að Þ3�2:7827 b=að �4

þ �0:11408þ0:35575 b=að Þ�1:8249 b=að Þ2þ2:9235 b=að Þ3�1:3864 b=að Þ4	 

β

þ 0:045929�0:32963 b=að Þþ1:1559 b=að Þ2�1:5206 b=að Þ3þ0:65655 b=að Þ4	 

β2

þ �0:004338þ0:034715 b=að Þ�0:11409 b=að Þ2þ0:14398 b=að Þ3�0:060793 b=að Þ4	 

β3

0:908≤FIISE=FIIE ≤ 1:050, 0:560≤FIISE ≤ 0:780ð Þ

ð14aÞ

For a> b,

KIIE ¼ πb3

a

� �1
2

� k2τ0sinβ

k2�νk02
� 

E kð Þþνk02K kð Þ	 

b2sin2βþa2cos2β
� 1

4
, k¼ 1� b2

a2

� �1
2

, k0 ¼ b
a

For a¼ b, KIIE ¼ 4τ0
ffiffiffi
a

p
sinβ

2�νð Þ ffiffiffi
π

p
where

E kð Þ¼
Z π

2

0
1�k2sin2Φ
� 1

2dΦ, K kð Þ¼
Z π

2

0

dΦ

1�k2sin2Φ
� 1

2

, FIIE¼K IIE βð Þ=τ0
ffiffiffiffiffi
πb

p

ð13Þ
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Figure 10 illustrates the values of formulas (14a) and
(14b) created, and Figure 11 illustrates the values of
FIISE βð Þ. From Figure 11, in the range of 1� ≤ β≤ 90� and
a=b= 1.0� 4.0, the maximum value of FIISE occurs at
β¼ 0. Also, around β¼ 0, the difference between the

ellipse and the semi-ellipse becomes large due to the
influence of the corner point singularity as shown in
Figure 9.25,34

4.3 | Formula for FIIISE

Table 5 summarizes the results for mode III SIF as “FIIISE

in Ref.9”, which is obtained from Equations (15) and
(16) for a/b= 1.0, 1.33, 1.5, 2.0, and 4.0 and 1� ≤ β≤ 90�

when ν¼ 0:3. The exact solution FIIIE of an elliptical
crack in an infinite body in Equation (15) is also indi-
cated for comparison.13 Different from Table 4, Table 5
shows that the ratio FIIISE=FIIIE is distributed in a wide
range FIIISE=FIIIE = 1.006� 31.6. As shown in Table A2

and Figure 3, unlike the SIF under tension, the
corner point singularity exponent pA is larger than that
of the normal crack as pA = 0.607 > 0.5. Therefore,
FIIISE value is supposed to go to infinity as FIIISE !∞ as
β! 0.

Unlike FIISE=FIIE, in Table 5 at β= 1� � 3�, the value
of mode III ratio FIIISE=FIIIE is quite large as
FIIISE=FIIIE > 10. However, this is not the effect of corner
point, and this is because the denominator of FIIISE=FIIIE

goes to zero. Because of symmetry, the SIF of the ellipti-
cal crack goes to zero as FIIIE ! 0 at β! 0. In this way, it
is found that when β is small, the ratio FIIISE=FIIIE is not
suitable to create an accurate formula since FIIIE ! 0 at
β! 0: Instead, to create an accurate formula, the least
squares method should be directly applied to FIIISE when
β is small. Specifically, when 1� ≤ β≤ 15�, the direct
value of FIIISE is considered considering FIIISE ¼
0.20� 0.42. When 15� ≤ β≤ 90�, the formula is created
for the ratio of FIIISE=FIIIE considering FIIISE=FIIIE ¼
1.01� 1.66.

5� ≤ β≤ 90� π=36≤ β≤ π=2ð Þ,1:0≤ a=b≤ 4:0 :
FIISE=FIIE ¼ 0:82882þ0:82452 b=að Þ�2:0801 b=að Þ2þ2:2124 b=að Þ3
�0:81022 b=að Þ4

þ½�0:014481þ0:041673 b=að Þ�0:069413 b=að Þ2þ0:067052 b=að Þ3
�0:028828 b=að Þ4Þ�β
þ½0:00072004�0:004082 b=að Þþ0:010009 b=að Þ2�0:010829 b=að Þ3
þ0:0043336 b=að Þ4Þ�β2
þ½�1:2656�10�5þ8:5432�10�5 b=að Þ�0:00022474 b=að Þ2
þ0:0002508 b=að Þ3�0:00010094 b=að Þ4�β3
þ½7:5027�10�8�5:4711�10�7 b=að Þþ1:4828�10�6 b=að Þ2
�1:6798�10�6 b=að Þ3þ6:7892�10�7 b=að Þ4�β4

0:811≤FIISE=FIIE ≤ 0:965, 0≤FIISE ≤ 0:720ð Þ

ð14bÞ

For a> b,

KIIIE ¼ πbað Þ12� � 1�νð Þk2τ0cosβ
k2�ν
� 

E kð Þþνk02K kð Þ	 

b2sin2βþa2cos2β
� 1

4
, k¼ 1� b2

a2

� �1
2

, k0 ¼ b
a

For a¼ b, KIIIE ¼ 4τ
ffiffiffi
b

p
1�νð Þcosβ

2�νð Þ ffiffiffi
π

p ,

where

E kð Þ¼
Z π

2

0
1�k2sin2Φ
� 1

2dΦ, K kð Þ¼
Z π

2

0

dΦ

1�k2sin2Φ
� 1

2
, FIIIE ¼KIIIE βð Þ=τ0

ffiffiffiffiffi
πb

p

ð15Þ
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Formula (16a) is created by applying the least-squares
method directly to the values of FIIISE in the range of
1� ≤ β≤ 15� shown in Table 5. The calculation formula
(16b) created by applying the least squares method to the

ratio of FIIISE=FIIIE in the range of 15� ≤ β≤ 90� is shown
below. The value of FIIISE obtained by these formulas has
an accuracy within 1.0% of the value of FIIISE of the body
force method in the range of a=b= 1.0� 4.0.

FIGURE 11 FIISE provided by

Equation (14).

FIGURE 10 FIISE=FIIE provided by

Equations (14a) and (14b).
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Figure 12 illustrates the values of formulas (16a) and
(16b) created. Figure 13 illustrates FIIISE βð Þ. From
Figure 13, in the range of 1� ≤ β≤ 90� and a/
b= 1.0� 4.0, the maximum value of FIIISE occurs at
β¼ 90�. Also, around β¼ 0, FIIISE !∞ due to the

influence of the corner point singularity, but due to sym-
metry, FIIISE ! 0, so the difference between ellipse and
semi-ellipse becomes very large as shown in Figure 12. In
other words, K IIISE finally goes to infinity as can be
expressed KIIISE !∞ as β! 0.

15� ≤ β≤ 90�
�
π=12≤ β≤ π=2,1:0≤ a=b≤ 4:0 :

FIIISE=FIIIE ¼ 0:83931þ2:2047 b=að Þþ0:72668 b=að Þ2�0:2876 b=að Þ3

þ 0:014972�0:1954 b=að Þ�0:0052608 b=að Þ2�0:015714 b=að Þ3	 �β
þ �0:00059058þ0:0073697 b=að Þ�0:0015559 b=að Þ2þ0:0016657 b=að Þ3	 


β2

þ½1:1462�10�5�0:00013795 b=að Þþ5:3974�10�5 b=að Þ2
�4:5724�10�5 b=að Þ3�β3

þ½�1:0855�10�7þ1:2625�10�6 b=að Þ�6:7493�10�7 b=að Þ2
þ5:2074�10�7 b=að Þ3�β4
þ½3:9866�10�10�4:4908�10�9 b=að Þþ2:9252�10�9 b=að Þ2
�2:1409�10�9 b=að Þ3�β5

1:006≤FIIISE=FIIIE ≤ 1:668, 0:2263≤FIIISE ≤ 0:8970ð Þ

ð16bÞ

1� ≤ β≤ 15� π=180≤ β≤ π=12ð Þ,1:0≤ a=b≤ 4:0 :
FIIISE ¼�0:27209þ3:3695 b=að Þ�6:2961 b=að Þ2þ5:1954 b=að Þ3�1:6383 b=að Þ4

þ 0:23536�1:4621 b=að Þþ2:3717 b=að Þ2�1:7884 b=að Þ3þ0:54852 b=að Þ4	 

β

þ �0:033483þ0:18208 b=að Þ�0:1872 b=að Þ2þ0:076744 b=að Þ3�0:01615 b=að Þ4	 

β2

þ 0:0023605�0:0075409 b=að Þ�0:0093679 b=að Þ2þ0:019907 b=að Þ3�0:0077304 b=að Þ4	 

β3

þ �7:3948�10�5�3:7927�10�5 b=að Þþ0:0014716 b=að Þ2�0:0019481 b=að Þ3þ0:00070752 b=að Þ4	 

β4

þ 7:9301�10�7þ5:9261�10�6 b=að Þ�3:9674�10�5 b=að Þ2þ4:7752�10�5 b=að Þ3�1:7016�10�5 b=að Þ4	 

β5

0:206≤FIIISE ≤ 0:4349, 1:121≤FIIISE=FIIIE ≤ 31:556ð Þ
ð16aÞ

FIGURE 12 FIIISE=FIIIE provided by Equation (16b).
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5 | SUMMARY OF SIF-β RELATION
OF SEMI-ELLIPTICAL CRACK IN
COMPARISON WITH SIF-β RELATION OF
ELLIPTICAL CRACK

Table 6 summarizes the SIF-β relation of a semi-elliptical
crack. Regarding mode I SIFs, the relation of the semi-
elliptical crack, FISE-β, is similar to the one of and the
elliptical crack, FIE-β, relation except at the corner point.
Therefore, the ratio relation, FISE=FIE-β, can be used con-
veniently to create the calculation formula for almost the
whole range. Regarding mode II SIFs, the FIIE-β relation

is also similar to the FIISE-β. Therefore, the ratio
FIISE=FIIE-β can be used conveniently to create the calcu-
lation formula for almost the whole range. It can be con-
cluded that the effect of corner point singularity is
localized just around the corner point.

Unlike mode I and mode II, it should be noted that
mode III SIF of an elliptical crack goes to zero when β goes
to zero. Therefore, FIIIE-β approximation is not suitable

when FIIIE takes relatively smaller value. The calcula-
tion formula should be based on the direct value of FIIISE.
Considering those behaviors, the accurate SIF formula
has been proposed.

FIGURE 13 FIIISE provided by Equation (16a) and Equation (16b).

TABLE 6 Behaver of

FISE,FIISE,FIIISE and FIE,FIIE,FIIIE

when β! 0.
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6 | CONCLUSIONS

Semi-elliptical crack modeling is the most common rep-
resentation to express surface defects. Fatigue surface
cracks initiate under alternate loading and propagate in a
semi-elliptical shape. In this study, based on the exact
solutions obtained by the hypersingular integral equation
methods, the SIF formulas were created to express the
SIF distributions. In particular, similar to solving
the hypersingular integral equations by using the solu-
tion of an elliptical crack, closed-form SIF distributions
of an elliptical crack were utilized. The specific behaviors
at the corner point were also considered. The conclusions
can be summarized as follows.

1. Under tensile loading in Figure 1A,B, the mode I for-
mula FISE can be created by focusing on the ratio
FISE=FIE in the entire range 1� ≤ β≤ 90� with less
than 1% error. Since the singularity exponent pS ¼
0.452< 0.5 at the corner point is weaker than that of
normal cracks, FISE ! 0 when β! 0. However, since
the effect of the corner point is local and limited to
the vicinity of βffi 0, it can be confirmed that FISE=FIE

is in a narrow range of FISE=FIE = 1.0344� 1.2875 for
1� ≤ β≤ 90�.

2. The SIF distribution FISE βð Þ obtained by the mode I
formula is examined by varying the aspect ratio
a=b = 1.0� 4.0 under tensile load. It was found that
the ΔF¼FMax

ISE �FMin
ISE takes the smallest value at

a=b = 1.27. Since the difference between the maxi-
mum and minimum values is smallest, fatigue surface
cracks maintain the shape ratio a=b≈ 1.27 and
enlarge the overall dimensions (see Figures 7 and 8).

3. Under shear loading in Figure 1C,D, the mode II for-
mula FIISE can be created by focusing on the ratio
FIISE=FIIE in the entire range 1� ≤ β≤ 90� with less
than 1% error. Since the singularity exponent
pA = 0.607> 0.5 at the corner point is stronger than
that of the normal cracks, FIISE !∞ as β! 0. How-
ever, since the effect of the corner point is local and
limited to the vicinity of βffi 0, it can be confirmed
that FIISE=FIIE is in a narrow range of
FIISE=FIIE = 0.811� 1.050 for 1� ≤ β ≤ 90�.

4. Under shear loading in Figure 1C,D, the mode III for-
mula FIIISE can be created by focusing on the value of
FIIISE directly in the range 1� ≤ β≤ 20� but focusing
on the ratio of FIIISE=FIIIE in the range 15� ≤ β≤ 90�

with less than 1% error. Unlike FISE, FIISE, the direct
value of FIIISE should be used because the solution of
the elliptical crack is not suitable since FIIIE ! 0 as
β! 0.
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NOMENCLATURE
a,b elliptical dimensions in Figure 1
x,y,zð ) Cartesian coordinate in Figure 1
ξ,η,ζð Þ x,y,zð ) coordinate where body force is

applied
x0,y0ð Þ x=a,y=bð )
ξ0,η0ð Þ ξ=a,η=bð Þ
E Young's modulus
FISE dimensionless stress intensity factor for

semi-elliptical surface cracks in a semi-
infinite body under mode I loading
(FISE ¼KI βð Þ=σ0

ffiffiffiffiffi
πb

p
)

F

ISE dimensionless stress intensity factor

for semi-elliptical surface
cracks normalized by

ffiffiffiffiffiffiffiffiffi
area

p
(F


ISE ¼KI βð Þ=σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffiffiffi
area

pp
)

FIISE dimensionless stress intensity factor for
semi-elliptic surface cracks in a semi-
infinite body under mode II loading
(FIISE ¼K II βð Þ=τ0

ffiffiffiffiffi
πb

p
)

FIIISE dimensionless stress intensity factor for
semi-elliptical surface cracks in a semi-
infinite body under mode III loading
(FIIISE ¼K III βð Þ=τ0

ffiffiffiffiffi
πb

p
)

FIE dimensionless stress intensity
factor for elliptical cracks in an
infinite body under mode I loading
(FIE ¼KI βð Þ=σ0

ffiffiffiffiffi
πb

p
)

FIIE dimensionless stress intensity factor
for elliptical cracks in an infinite body
under mode II loading
(FIIE ¼KII βð Þ=τ0

ffiffiffiffiffi
πb

p
)

FIIIE dimensionless stress intensity factor
for elliptical cracks in an infinite body
under mode III loading
(FIIIE ¼K III βð Þ=τ0

ffiffiffiffiffi
πb

p
)

FMax
ISE , FMin

ISE maximum and minimum dimensionless
stress intensity factors for a semi-
elliptical surface crack in a semi-
infinite field
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FAve:
ISE mean value of dimensionless stress inten-

sity factors for a semi-elliptical surface
crack in a semi-infinite body defined in

FAve:
ISE 	 1

N

PN
i¼1

FISE i deg:ð Þð Þ, N ¼ 90

FSD
ISE standard deviation of dimensionless

stress intensity factors for a semi-elliptical
surface crack in a semi-infinite body
defined in FSD

ISE 	
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

FISE i deg:ð Þð Þ�FAve:
ISE

� 2s
, N ¼ 90

ΔF difference between maximum
and minimum of dimensionless
stress intensity factors for a
semi-elliptical surface crack
(ΔF¼FMax

ISE βffi3� �FMin
ISE

�� ��
β¼4��90� ,

ΔF¼FMax
ISE β¼90� �FMin

ISE

�� ��
β¼4��90� )

KMax
ISE

��
βffi 3�or
β¼ 90�

maximum dimensionless stress intensity
factors on the βffi 3�or β¼ 90�

K
Max
ISE

��
βffi 3�or
β¼ 90�

maximum dimensionless stress intensity
factors in

ffiffiffiffiffiffiffiffiffi
area

p
on the βffi 3�

H 1�2νð Þ=4 1�νð Þ2
MI dimensionless stress intensity factor
MI x0,y0ð Þ dimensionless crack opening

displacement
Uz x0,y0ð Þ crack opening displacement

uz x,y, þ0ð )-uz x,y, �0ð )
β parametric angle from free surface (�)

specifying ellipse as x,yð Þ¼ acosβð ,
bsinβÞ

ν Poisson's ratio (in most cases ν¼ 0:3Þ
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APPENDIX A: PREVIOUS STUDIES FOR
CORNER POINT SINGULARITY EXPONENT

Table A1 summarizes the previous studies for the corner
point singularity exponent pS under symmetric deforma-
tion. As shown in Table A1, although some differences
can be seen,, when ν≠ 0, pS <0:5 and only when ν¼ 0,
pS ¼ 0:5. Table A2 summarizes the previous studies for

the corner point singularity exponent pS under skew-
symmetric deformation. As shown in Table A2, although
some differences can be seen, when ν≠ 0, pA >0:5 and
only when ν¼ 0, pA ¼ 0:5. Tables A1 and A2 are useful
for surface cracks when the intersection angle at the cor-
ner point θS ¼ 90�.

Table A3 shows the maximum SIF FMax
ISE ¼

KMax
ISE = σ0

ffiffiffiffiffi
πb

p� 
of a square surface crack under tension

and the position by varying Poisson's ratio ν:36

When ν¼ 0:3, the maximum SIF FMax
I appears at y

¼ 4:69�10�2�a, which coincides with the position of
the maximum SIF of the semicircular crack, that is, y¼
sin 3� ¼ 5:24�10�2�a: Murakami-Ishida36 also investi-
gated that since the region controlled by the corner point
singularity is limited in the small range y¼�10�3�a.
Therefore, the discussion on the corner point singularity
is practically meaningless.

Table A4 shows that corner point singularity expo-
nents pS for symmetric deformation by varying the crack
front angle intersecting to free surface θS:

33 The results in
Table A4 can be used to obtain the crack front angle
intersection to free surface θS to provide pS ¼ 0:5. The
results of Table A4 can be plotted as shown in Figure A1
to obtain θS providing pS¼ 0:5. This paper deals with the
semi-elliptical crack in a semi-infinite body under uni-
form loading as shown in Figure 1A. However, if a semi-
elliptical crack is subjected to alternative tensile loading,
around the corner point, the crack shape near the free
surface will be changed as shown in the figure in
Table A4 and Figure A1B because, except at the corner
point, the SIF value is quite large, and only at the
corner point, the SIF value is zero. Therefore, the formula
proposed in this paper in the range 1� ≤ β ≤ 90� can be
applied to the crack shape in Figure 4 in the range

TABLE A3 Maximum stress

intensity factor FMax
I of a square surface

crack under tension and the position by

varying Poisson's ratio ν36

(FMax
ISE ¼KMax

ISE = σ0
ffiffiffiffiffi
πb

p� 
).

ν FMax
I y=að Þjx¼a

0.0 0.955 0

0.1 0.950 1.17 � 10�2

0.2 0.965 2.34 � 10�2

0.3 0.992 4.69 � 10�2

0.4 1.03 4.69 � 10�2

0.45 1.05 (4.69 � 9.375 � 10�2)

0.49 1.08 (4.69 � 9.375 � 10�2)

TABLE A2 Singularity exponent pA at corner point to express

singular stress under skew-symmetric mode II, III type

deformation.

ν Ref.31 Ref.32

0 0.4999

0.15 0.5668 0.565

0.3 0.6073 0.598

0.4 0.6286 0.604

0.5 0.6462

TABLE A1 Singularity exponent pS at corner point to express

singular stress under symmetric mode I type deformation.

ν Ref.30 Ref.31 Ref.32 Ref.33

0 0.5 0.49997 0.5002

0.1 0.4904

0.15 0.4836 0.4835 0.484

0.2 0.4755

0.3 0.4523 0.4519 0.452 0.4523

0.4 0.4132 0.4141 0.413 0.4133

0.5 0.3318 0.3452 0.3316
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0≤ β≤ 90�. In other words, since the corner point singu-
larity is meaningless in practice, such semi-elliptical sur-
face crack modeling should be considered such that the
crack front intersects the free surface as shown in
Figure 4.

APPENDIX B: PREVIOUS STUDIES FOR THE SIF
OF A SEMI-ELLIPTICAL SURFACE CRACK

Readers may think that the present results need to be
compared to some representative highly accurate and
well-accepted literature data obtained by numerical

methods. In this section, therefore, the SIF of the pro-
posed formula will be compared with the previous
results. For the readers' understanding of the accuracy,
the compliance of the boundary condition will be indi-
cated. Several results were previously obtained based on
the same hypersingular integral Equation (1) but by
using different numerical methods. Those results will be
shown for the readers' convenience.

f jð Þ ξ,ηð Þ¼ f j �w ξ,ηð Þ,

w ξ, ηð Þ¼ bσ∞z
HΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ=að Þ2� η=bð Þ2

q
,

9>>=
>>; ðB1aÞ

TABLE A4 Corner point singularity exponents pS for symmetric deformation vs crack front angle intersecting to free surface θS.
33

θS

ν

0.0 0.1 0.2 0.3 0.4 0.5

22.5 0.1325 0.1139 0.0913 0.0646 0.0339

45 0.3056 0.2852 0.2536 0.2058 0.1313

67.5 0.4195 0.4054 0.3814 0.3422 0.2727 0.0507

90 0.5002 0.4904 0.4755 0.4523 0.4133 0.3316

112.5 0.5655 0.5597 0.5536 0.546 0.5344 0.5136

135 0.6075 0.6112 0.6174 0.626 0.6364 0.6473

157.5 0.6169 0.6294 0.6482 0.6717 0.6969 0.7211

FIGURE A1 Corner point

singular exponents pS for

symmetric deformation vs crack

front angle intersecting to free

surface θS.
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Φ¼
E kð Þ, k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
a≥ bð Þ

b
a
E k0ð Þ, k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
a< bð Þ

9>=
>;

8><
>: : ðB1bÞ

Figure B1 illustrates the division of the crack region
previously used to solve Equation (1) expressing the
boundary condition σz ¼ 0. As can be seen in Figure B1,
instead of applying polynomial in Equations (3) � (5),
the unknown function was approximated by the stepped
functions or linear functions with Equation (B1). Here,
w x,yð Þ is a fundamental density function of a body force,
which expresses the stress field due to an elliptical crack
in an infinite body and leads to solutions with high accu-
racy. Initially, Nisitani-Murakami used a stepped func-
tion having a constant value at jth division as shown in
Figure B1A to approximate the weight function f j:

38–40

Murakami-Isida41 and Isida-Tsuru-Noguchi42,43 used a
linear function Fj ξ,ηð Þ expressed in Equation (B2). In
those studies,38–43 the weight functions f j and Fj ξ,ηð Þ
were determined from the boundary conditions at collo-
cation points selected in the jth division without consid-
ering other points.

f jð Þ ξ,ηð Þ¼Fj ξ,ηð Þw ξ,ηð Þ, Fj ξ,ηð Þ¼ cjξþdjηþ ej: ðB2Þ

Since no previous study is available for the SIF distri-
bution FISE βð Þ, the SIF at the deepest point FISE 90�ð Þ
specified as β¼ 90� in Figure 1A is mainly focused. By
using the approximation shown in Figure B1C and
Equation (B2), Isida et al. analyzed the semi-elliptical
crack and proposed the following formula to estimate the
SIFFISE 90�ð Þ at the deepest point.39,42,43

FIsida
ISE 90�ð Þ¼ 1:1526þ0:1132ν�0:0528ν2

þ b=að Þ �0:7167�0:1479νþ1:0259ν2
� 

þ b=að Þ2 0:2003þ0:0347ν�0:7182ν2
� 

0≤ ν≤ 0:4,1:0≤ a=b≤ 4:0ð Þ
ðB3Þ

As indicated in Section 2, in the present analysis,
polynomials have been used to approximate the
unknown functions as a continuous function.
Figure B2A�C illustrate the compliance of the boundary
conditions along the prospective crack surface with vary-
ing n in Equation (5). The boundary condition, that is,
σz ¼ 0, becomes highly satisfied with increasing n. When
Poisson's ratio ν¼ 0:3 and n¼ 18, the error is less than
3�10�3 throughout the crack region. The boundary con-
dition is more highly satisfied when ν¼ 0 within the
error 1�10�3. From those figures examining the bound-
ary condition and the convergence shown in Tables 1
and 2, it can be conjectured that the solutions indicated
in Sections 3 and 4 have more than three-digit accuracy
and are more accurate and reliable than any other
results. Similarly, when the semi-elliptical surface crack
is subjected to remote shear in Figure 1C, the compliance
of the boundary conditions, that is, τyz ¼ 0, τzx ¼ 0, are
examined in reference9. For example, Figure B2D illus-
trates the boundary condition τyz ¼ 0 when
n¼ 15,ν¼ 0:3, a=b¼ 1.

Table B1 shows the present results discussed in
Section 3 under remote tension and several previous
results. As indicated above, the most reliable mode I SIF,
FN�M
ISE of Noda-Miyoshi3,26 and the value of formula
FEq 8ð Þ
ISE in Equation (8) are compared with FIsida

ISE 90�ð Þ in
Equation (B3),39 FI�N

ISE of Isida-Noguchi,44 and FR�N
ISE of

Raju-Newman.45 As shown in Table B1, the accuracy of
those previous results can be confirmed from the ratio

FIGURE B1 Approximation of weighting function using the step function at each element. (A) Nisitani-Murakami38 and Isida-

Noguchi-Yoshida,39,40 (B) Murakami-Isida,41 and (C) Isida-Tsuru-Noguchi.42,43
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FN�M
ISE /FN�M

ISE , FEq 8ð Þ
ISE /FN�M

ISE ,FIsida
ISE /FN�M

ISE , FI�N
ISE /FN�M

ISE , and
FR�N
ISE /FN�M

ISE . Equation (B3) provides the SIF at the dee-
pest point within 0.5% error since FIshida

ISE 90�ð Þ agrees well
with FN�M

ISE . Since Isida-Noguchi used the linear function
approximation in Equation (B2), it is difficult to obtain
the SIF around the corner point. Therefore, only when
a=b = 1.0, Isida-Noguchi provided the SIF around the
corner point at β≈ � 3�: The result coincides with the
present results within 0.5% error. The result of Raju-
Newman FR�N

ISE
45 when a=b = 1.0/0.6= 1: _66 coincides

with the present result within 1.3% error.
Tables B2 and B3 show the present results when the

semi-elliptical crack is subjected to remote shear as dis-
cussed in Section 4. The most reliable SIFs FN�K�B

IISE ,
FN�K�B
IIISE of Noda-Kihara-Beppu9 and the value of for-

mulaFEq 14ð Þ
IISE in Equation (14) and FEq 16ð Þ

IIISE in
Equation (16) are compared with the previous

results FH�H
IISE , FH�H

IIISE obtained by He-Hutchinson.29 As
shown in Tables B2 and B3, the accuracy of FH�H

IISE ,
FH�H
IIISE can be confirmed from the ratio FH�H

IISE /FN�K�B
IISE

and FH�H
IIISE /F

N�K�B
IIISE . Note that the values of FH�H

IISE in
Table B2 and the values of FH�H

IIISE in Table B3 are taken
from the charts in Ref.29 From Tables B2, it is seen that
the results of FH�H

IISE agree with the present results within
3% error. Also, it is seen that the FH�H

IIISE results agree with
the present results within about 3% in most cases; how-
ever, only some cases in the range β≤ 8�, FH�H

IIISE has less
than or equal to about 8% error. He-Hutchinson29 also
considered the exact solution of the elliptical crack in an
infinite body. However, for mode III SIF in the range
β≤ 8�, as shown in Tables 5 and 6, the semi-elliptical
crack solution FIIISE is totally different from the exact
solution of the elliptical crack FIIIE . This may be the rea-
son why about 8% appears in FH�H

IIISE βð Þ.

FIGURE B2 Compliance of boundary condition σz ¼ 0 or τyz ¼ 0. (A) σz ¼ 0 when n¼ 18,ν¼ 0:3, a=b¼ 1. (B) σz ¼ 0 when

n¼ 18,ν¼ 0:3, a=b¼ 4:0. (C) σz ¼ 0 when n¼ 18,ν¼ 0, a=b¼ 1. (D) τyz ¼ 0 when n¼ 15,ν¼ 0:3, a=b¼ 1.
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